Mcmc Using Graphical Models
نویسندگان
چکیده
Markov chain Monte Carlo techniques have revolutionized the field of Bayesian statistics. Their enormous power and their generalizability have rendered them the method of choice for statistical inference in many scientific disciplines. Their power is so great that they can even accommodate situations in which the structure of the statistical model itself is uncertain. However, the analysis of such “trans-dimensional” models is not easy, with several significant technical and practical difficulties to overcome. In this paper we present a class of graphical models that allow relatively straightforward analysis of a subset of these trans-dimensional problems. We also present a ‘guided tour’ of the reversible jump methodology underlying our approach and discuss how each of the various difficulties has been circumvented. Our approach has been implemented using the WinBUGS framework as a Gibbs-Metropolis sampling ‘engine’. The main advantage of this is that it affords the analyst much modelling flexibility: trans-dimensional sub-graphs may be used as generic components within an arbitrarily wide range of Bayesian graphical models. We present three example analyses to illustrate our approach.
منابع مشابه
Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms
Bayesian learning in undirected graphical models—computing posterior distributions over parameters and predictive quantities— is exceptionally difficult. We conjecture that for general undirected models, there are no tractable MCMC (Markov Chain Monte Carlo) schemes giving the correct equilibrium distribution over parameters. While this intractability, due to the partition function, is familiar...
متن کاملConvergence Assessment for Reversible Jump MCMC Simulations
In this paper we introduce the problem of assessing convergence of reversible jump MCMC algorithms on the basis of simulation output. We discuss the various direct approaches which could be employed, together with their associated drawbacks. Using the example of fitting a graphical Gaussian model via RJMCMC, we show how the simulation output for models which can be parameterised so that paramet...
متن کاملMonte Carlo MCMC: Efficient Inference by Approximate Sampling
Conditional random fields and other graphical models have achieved state of the art results in a variety of tasks such as coreference, relation extraction, data integration, and parsing. Increasingly, practitioners are using models with more complex structure—higher treewidth, larger fan-out, more features, and more data—rendering even approximate inference methods such as MCMC inefficient. In ...
متن کاملMonte Carlo MCMC: Efficient Inference by Sampling Factors
Conditional random fields and other graphical models have achieved state of the art results in a variety of NLP and IE tasks including coreference and relation extraction. Increasingly, practitioners are using models with more complex structure—higher tree-width, larger fanout, more features, and more data—rendering even approximate inference methods such as MCMC inefficient. In this paper we p...
متن کاملParticle Filtered MCMC-MLE with Connections to Contrastive Divergence
Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce...
متن کاملQuery-Aware MCMC
Traditional approaches to probabilistic inference such as loopy belief propagation and Gibbs sampling typically compute marginals for all the unobserved variables in a graphical model. However, in many real-world applications the user’s interests are focused on a subset of the variables, specified by a query. In this case it would be wasteful to uniformly sample, say, one million variables when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005